


about me

* programmer + DevOps enthusiast
- Java, Groovy, learning Clojure
- Linux, Ansible, Liquibase, Maven

* CO-0rganizing software craftsmanship groups:
— Ruhrgebiet + Dlusseldorf (Germany) T

— coderetreats, coding dojos
€) georgberky
Q) georg.berky@valtech-mobility.com




terminology

* brownfield
— undeveloped land
— muddy, not nice to walk on
— existing codebase, untested code

* greenfield
— new project
— nice to walk on

— test drive your code from the start

O




food for thought

, Michael Feathers ¥
y @mieathers

Replying to @Mrlarson2007 and 3 others

Key lesson is, you can always (read: most of the time) do

greenfield in a legacy code base. Create new classes for new
features.

O 21 5:05PM - Aug 1, 2019 ©)




today’s agenda

* some theory + lots of live coding

e seams, enabling points, types of refactoring
* Sprouting

* wrap class

* split loop

O




SOources

« WELC:
Michael C. Feathers — Working effectively with
_egacy Code, Prentice Hall, 2004

* REF:
Martin Fowler — Refactoring (2™ edition),
Boston : Addison-Wesley, 2019

O



Seams

* where pieces of clothing are sewn together

* "a place where you can alter behavior (...)
without editing in that place” (WELC, p.31)

Peter Southwood [CCO



Seams

* several types of seams

* e.d.. object seams
— override method
- Inject method parameter
— Inject dependency in constructor
- make static method non-static + override
- many more...

Peter Southwood [CCO



enabling points

* "Every seam has an enabling point, a place
where you can make the decision to use one
behavior or another” (WELC, p.36)

* object seam:
— override In class definition
— argument list of constructor/method

Peter Southwood [CCO



* In-sSitu
- change everything on the spot

— forces changes to other spots

- tests/builds stay red longer

- Isolated: branch/local commits
- merge before being able to ship

GeePaw Hill - Refactoring: Side-b



= kee
- wWor
~ constantly
— constantly
- ship on demand

OMG

| LOVE THIS BRANCH




Gilded Rose Kata




preparations

* add tests before you refactor
— characterization tests
— use dependency breakers from WELC
- golden master

 safety net for refactoring

O



Sprouting

 when: you don’t have much time

* new functionality in new method/class
* test-drive all new code

» call from existing code

* long term:
- similarities between sprouts
- refactor to new design

O

WELC. p. 59ff Mark Hofstetter (CC BY 2.5




wrap class

* when: you cannot change a class
— 3rd party library
— goblin in the corner

* wrap the class + gold plate it
e antidote for: anemic data model

O

Martin Howard (Flickr, CC BY-SA 2.0



wrap class

* gold-plate Item
e create wrapper for ltem: Gildedltem
* use wrapper in production code

* Intermediate mess: aliasing
- Items in GildedRose
- ltems wrapped by Gildedltem

O

Martin Howard (Flickr, CC BY-SA 2.0



Intermediate “mess”

* reach the highway
by going in the “wrong” direction first

in the “right” direction

...50 it can be faster to drive a short
distance in the wrong direction to
reach the fast highway

start T ¥ XK destination

\
The direct route to your destination aa 0. —
0 may be a slow, winding road... wve W s &

https://martinfowler. com/artlcles/preparatorv refactoring-example.html




Intermediate “mess”

“wrong” direction first:
ltem and GildedItem side-by-side

: now we have a target class:
m eth OdS ..50 It can be faster to drive a short

df'stance in the wrong direction to
reach the fast highway

start T T X destination

|

The direct route to your destination y ¥ g
0 may be a slow, Wmdmg road... rY ¥ YT




split loop

when: multiple computations tangled in one loop
copy the loop

identify and eliminate other computations
— use test coverage markers

clean up if possible:
- slide statements
— extract function

test

O

Arbitraril BY-SA 3.0



SOources

« WELC:
Michael C. Feathers — Working effectively with
_egacy Code, Prentice Hall, 2004

* REF:
Martin Fowler — Refactoring (2™ edition),
Boston : Addison-Wesley, 2019

O



thank you!

€) georgberky
Q) georg.berky@valtech-mobility.com



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

