

Green patches in your brownfield

Dnpatton [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

about me
● programmer + DevOps enthusiast

– Java, Groovy, learning Clojure
– Linux, Ansible, Liquibase, Maven

● co-organizing software craftsmanship groups:
– Ruhrgebiet + Düsseldorf (Germany)
– coderetreats, coding dojos
georgberky

georg.berky@valtech-mobility.com

terminology
● brownfield ⛈

– undeveloped land
– muddy, not nice to walk on
– existing codebase, untested code

● greenfield ☀️
– new project
– nice to walk on
– test drive your code from the start

food for thought 🤔

today’s agenda
● some theory + lots of live coding
● seams, enabling points, types of refactoring
● sprouting
● wrap class
● split loop

sources
● WELC:

Michael C. Feathers – Working effectively with
Legacy Code, Prentice Hall, 2004

● REF:
Martin Fowler – Refactoring (2nd edition),
Boston : Addison-Wesley, 2019

seams
● where pieces of clothing are sewn together

● ”a place where you can alter behavior (…)
without editing in that place” (WELC, p.31)

Peter Southwood [CC0]

seams
● several types of seams
● e.g.: object seams

– override method
– inject method parameter
– inject dependency in constructor
– make static method non-static + override
– many more...

Peter Southwood [CC0]

enabling points
● ”Every seam has an enabling point, a place

where you can make the decision to use one
behavior or another” (WELC, p.36)

● object seam:
– override in class definition
– argument list of constructor/method

Peter Southwood [CC0]

types of refactoring
● in-situ

– change everything on the spot
– forces changes to other spots
– tests/builds stay red longer
– isolated: branch/local commits
– merge before being able to ship
– cannot ship on demand

GeePaw Hill - Refactoring: Side-by-Side v. In Situ

types of refactoring
● side-by-side

– keep the old version functioning
– work on the replacement in parallel
– constantly green tests/builds
– constantly integrated
– ship on demand

GeePaw Hill - Refactoring: Side-by-Side v. In Situ

Gilded Rose Kata

preparations
● add tests before you refactor

– characterization tests
– use dependency breakers from WELC
– golden master

● safety net for refactoring

sprouting
● when: you don’t have much time
● new functionality in new method/class
● test-drive all new code
● call from existing code
● long term:

– similarities between sprouts
– refactor to new design

WELC, p. 59ff Mark Hofstetter (CC BY 2.5)

wrap class
● when: you cannot change a class

– 3rd party library
– goblin in the corner

● wrap the class + gold plate it
● antidote for: anemic data model

Martin Howard (Flickr, CC BY-SA 2.0)

wrap class
● gold-plate Item
● create wrapper for Item: GildedItem
● use wrapper in production code
● intermediate mess: aliasing

– Items in GildedRose
– Items wrapped by GildedItem

Martin Howard (Flickr, CC BY-SA 2.0)

intermediate “mess”
● reach the highway

by going in the “wrong” direction first
● go in the “right” direction

stay slow

https://martinfowler.com/articles/preparatory-refactoring-example.html

● “wrong” direction first:
Item and GildedItem side-by-side

● but: now we have a target class:
e.g. for moving methods

intermediate “mess”

https://martinfowler.com/articles/preparatory-refactoring-example.html

split loop
● when: multiple computations tangled in one loop
● copy the loop
● identify and eliminate other computations

– use test coverage markers

● clean up if possible:
– slide statements
– extract function

● test

REF, p. 227ff Arbitrarily0 (CC BY-SA 3.0)

sources
● WELC:

Michael C. Feathers – Working effectively with
Legacy Code, Prentice Hall, 2004

● REF:
Martin Fowler – Refactoring (2nd edition),
Boston : Addison-Wesley, 2019

thank you!

georgberky

georg.berky@valtech-mobility.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

